Incorporate Filters code into NuEVI repo for smoother setup.
This commit is contained in:
parent
c6ad2b6c53
commit
4966a7ea42
5 changed files with 333 additions and 4 deletions
240
NuEVI/FilterOnePole.cpp
Normal file
240
NuEVI/FilterOnePole.cpp
Normal file
|
@ -0,0 +1,240 @@
|
|||
// Copyright 2014 Jonathan Driscoll
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "FilterOnePole.h"
|
||||
|
||||
#include <Arduino.h>
|
||||
|
||||
FilterOnePole::FilterOnePole( FILTER_TYPE ft, float fc, float initialValue ) {
|
||||
setFilter( ft, fc, initialValue );
|
||||
}
|
||||
|
||||
void FilterOnePole::setFilter( FILTER_TYPE ft, float fc, float initialValue ) {
|
||||
FT = ft;
|
||||
setFrequency( fc );
|
||||
|
||||
Y = initialValue;
|
||||
Ylast = initialValue;
|
||||
X = initialValue;
|
||||
|
||||
LastUS = micros();
|
||||
}
|
||||
|
||||
float FilterOnePole::input( float inVal ) {
|
||||
long time = micros();
|
||||
ElapsedUS = float(time - LastUS); // cast to float here, for math
|
||||
LastUS = time; // update this now
|
||||
|
||||
// shift the data values
|
||||
Ylast = Y;
|
||||
X = inVal; // this is now the most recent input value
|
||||
|
||||
// filter value is controlled by a parameter called X
|
||||
// tau is set by the user in microseconds, but must be converted to samples here
|
||||
TauSamps = TauUS / ElapsedUS;
|
||||
|
||||
float ampFactor;
|
||||
#ifdef ARM_FLOAT
|
||||
ampFactor = expf( -1.0 / TauSamps ); // this is 1 if called quickly
|
||||
#else
|
||||
ampFactor = exp( -1.0 / TauSamps ); // this is 1 if called quickly
|
||||
#endif
|
||||
|
||||
Y = (1.0-ampFactor)*X + ampFactor*Ylast; // set the new value
|
||||
|
||||
return output();
|
||||
}
|
||||
|
||||
void FilterOnePole::setFrequency( float newFrequency ) {
|
||||
setTau( 1.0/(TWO_PI*newFrequency ) ); // τ=1/ω
|
||||
}
|
||||
|
||||
void FilterOnePole::setTau( float newTau ) {
|
||||
TauUS = newTau * 1e6;
|
||||
}
|
||||
|
||||
float FilterOnePole::output() {
|
||||
// figure out which button to read
|
||||
switch (FT) {
|
||||
case LOWPASS:
|
||||
// return the last value
|
||||
return Y;
|
||||
break;
|
||||
case INTEGRATOR:
|
||||
// using a lowpass, but normaize
|
||||
return Y * (TauUS/1.0e6);
|
||||
break;
|
||||
case HIGHPASS:
|
||||
// highpass is the _difference_
|
||||
return X-Y;
|
||||
break;
|
||||
case DIFFERENTIATOR:
|
||||
// like a highpass, but normalize
|
||||
return (X-Y)/(TauUS/1.0e6);
|
||||
break;
|
||||
default:
|
||||
// should never get to here, return 0 just in case
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
void FilterOnePole::print() {
|
||||
Serial.println("");
|
||||
Serial.print(" Y: "); Serial.print( Y );
|
||||
Serial.print(" Ylast: "); Serial.print( Ylast );
|
||||
Serial.print(" X "); Serial.print( X );
|
||||
Serial.print(" ElapsedUS "); Serial.print( ElapsedUS );
|
||||
Serial.print(" TauSamps: "); Serial.print( TauSamps );
|
||||
//Serial.print(" ampFactor " ); Serial.print( ampFactor );
|
||||
Serial.print(" TauUS: "); Serial.print( TauUS );
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
void FilterOnePole::test() {
|
||||
float tau = 10;
|
||||
float updateInterval = 1;
|
||||
float nextupdateTime = millis()*1e-3;
|
||||
|
||||
float inputValue = 0;
|
||||
FilterOnePole hp( HIGHPASS, tau, inputValue );
|
||||
FilterOnePole lp( LOWPASS, tau, inputValue );
|
||||
|
||||
while( true ) {
|
||||
float now = millis()*1e-3;
|
||||
|
||||
// switch input values on a 20 second cycle
|
||||
if( round(now/20.0)-(now/20.0) < 0 )
|
||||
inputValue = 0;
|
||||
else
|
||||
inputValue = 100;
|
||||
|
||||
hp.input(inputValue);
|
||||
lp.input(inputValue);
|
||||
|
||||
if( now > nextupdateTime ) {
|
||||
nextupdateTime += updateInterval;
|
||||
|
||||
Serial.print("inputValue: "); Serial.print( inputValue );
|
||||
Serial.print("\t high-passed: "); Serial.print( hp.output() );
|
||||
Serial.print("\t low-passed: "); Serial.print( lp.output() );
|
||||
Serial.println();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FilterOnePole::setToNewValue( float newVal ) {
|
||||
Y = Ylast = X = newVal;
|
||||
}
|
||||
|
||||
|
||||
// stuff for filter2 (lowpass only)
|
||||
// should be able to set a separate fall time as well
|
||||
FilterOnePoleCascade::FilterOnePoleCascade( float riseTime, float initialValue ) {
|
||||
setRiseTime( riseTime );
|
||||
setToNewValue( initialValue );
|
||||
}
|
||||
|
||||
void FilterOnePoleCascade::setRiseTime( float riseTime ) {
|
||||
float tauScale = 3.36; // found emperically, by running test();
|
||||
|
||||
Pole1.setTau( riseTime / tauScale );
|
||||
Pole2.setTau( riseTime / tauScale );
|
||||
}
|
||||
|
||||
float FilterOnePoleCascade::input( float inVal ) {
|
||||
Pole2.input( Pole1.input( inVal ));
|
||||
return output();
|
||||
}
|
||||
|
||||
// clears out the values in the filter
|
||||
void FilterOnePoleCascade::setToNewValue( float newVal ) {
|
||||
Pole1.setToNewValue( newVal );
|
||||
Pole2.setToNewValue( newVal );
|
||||
}
|
||||
|
||||
float FilterOnePoleCascade::output() {
|
||||
return Pole2.output();
|
||||
}
|
||||
|
||||
void FilterOnePoleCascade::test() {
|
||||
// make a filter, how fast does it run:
|
||||
|
||||
float rise = 1.0;
|
||||
FilterOnePoleCascade myFilter( rise );
|
||||
|
||||
// first, test the filter speed ...
|
||||
long nLoops = 1000;
|
||||
|
||||
Serial.print( "testing filter with a rise time of ");
|
||||
Serial.print( rise ); Serial.print( "s" );
|
||||
|
||||
Serial.print( "\n running filter speed loop ... ");
|
||||
|
||||
float startTime, stopTime;
|
||||
|
||||
startTime = millis()*1e-3;
|
||||
for( long i=0; i<nLoops; ++i ) {
|
||||
myFilter.input( PI ); // use pi, so it will actually do a full calculation
|
||||
}
|
||||
stopTime = millis()*1e-3;
|
||||
|
||||
Serial.print( "done, filter runs at " );
|
||||
Serial.print( float(nLoops) / (stopTime - startTime) );
|
||||
Serial.print( " hz " );
|
||||
Serial.print( "\n filter value: " ); Serial.print( myFilter.output() );
|
||||
|
||||
myFilter.setToNewValue( 0.0 );
|
||||
Serial.print( "\n after reset to 0: "); Serial.print( myFilter.output() );
|
||||
|
||||
Serial.print( "\n testing rise time (10% to 90%) ...");
|
||||
|
||||
bool crossedTenPercent = false;
|
||||
while( myFilter.output() < 0.9 ) {
|
||||
myFilter.input( 1.0 );
|
||||
if( myFilter.output() > 0.1 && !crossedTenPercent ) {
|
||||
// filter first crossed the 10% point
|
||||
startTime = millis()*1e-3;
|
||||
crossedTenPercent = true;
|
||||
}
|
||||
}
|
||||
stopTime = millis()*1e-3;
|
||||
|
||||
Serial.print( "done, rise time: " ); Serial.print( stopTime-startTime );
|
||||
|
||||
Serial.print( "testing attenuation at f = 1/risetime" );
|
||||
|
||||
myFilter.setToNewValue( 0.0 );
|
||||
|
||||
float maxVal = 0;
|
||||
float valWasOutputThisCycle = true;
|
||||
|
||||
__unused float lastFilterVal = 0;
|
||||
|
||||
while( true ) {
|
||||
float now = 1e-3*millis();
|
||||
|
||||
float currentFilterVal = myFilter.input( sin( TWO_PI*now) );
|
||||
|
||||
if( currentFilterVal < 0.0 ) {
|
||||
if( !valWasOutputThisCycle ) {
|
||||
// just crossed below zero, output the max
|
||||
Serial.print( maxVal*100 ); Serial.print( " %\n" );
|
||||
valWasOutputThisCycle = true;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue