Automated prettifier and tabulator

This commit is contained in:
John Stäck 2019-03-02 09:46:26 +01:00
parent 3aa427fdd5
commit ca90f8f664

429
NuEVI.ino
View file

@ -638,7 +638,7 @@ void setup() {
void loop() { void loop() {
breathFilter.input(analogRead(breathSensorPin)); breathFilter.input(analogRead(breathSensorPin));
pressureSensor = constrain((int)breathFilter.output(),0,4095); // Get the filtered pressure sensor reading from analog pin A0, input from sensor MP3V5004GP pressureSensor = constrain((int) breathFilter.output(), 0, 4095); // Get the filtered pressure sensor reading from analog pin A0, input from sensor MP3V5004GP
//pressureSensor = analogRead(A0); //pressureSensor = analogRead(A0);
//pressureSensor = smooth(analogRead(0), filterVal, smoothedVal); // second parameter determines smoothness - 0 is off, .9999 is max smooth //pressureSensor = smooth(analogRead(0), filterVal, smoothedVal); // second parameter determines smoothness - 0 is off, .9999 is max smooth
if (mainState == NOTE_OFF) { if (mainState == NOTE_OFF) {
@ -662,10 +662,10 @@ void loop() {
mainState = RISE_WAIT; // Go to next state mainState = RISE_WAIT; // Go to next state
} }
if (legacy || legacyBrAct) { if (legacy || legacyBrAct) {
if (((pbUp > ((pitchbMaxVal + pitchbThrVal)/2)) && (pbDn > ((pitchbMaxVal + pitchbThrVal)/2)) && legacy) || ((analogRead(0) < (breathCalZero - 800)) && legacyBrAct) && (pbUp > ((pitchbMaxVal + pitchbThrVal)/2)) && (pbDn < ((pitchbMaxVal + pitchbThrVal)/2))) { // both pb pads touched or br suck if (((pbUp > ((pitchbMaxVal + pitchbThrVal) / 2)) && (pbDn > ((pitchbMaxVal + pitchbThrVal) / 2)) && legacy) || ((analogRead(0) < (breathCalZero - 800)) && legacyBrAct) && (pbUp > ((pitchbMaxVal + pitchbThrVal) / 2)) && (pbDn < ((pitchbMaxVal + pitchbThrVal) / 2))) { // both pb pads touched or br suck
readSwitches(); readSwitches();
fingeredNoteUntransposed=patchLimit(fingeredNoteUntransposed+1); fingeredNoteUntransposed = patchLimit(fingeredNoteUntransposed + 1);
if (exSensor >= ((extracThrVal+extracMaxVal)/2)){ // instant midi setting if (exSensor >= ((extracThrVal + extracMaxVal) / 2)) { // instant midi setting
if ((fingeredNoteUntransposed >= 73) && (fingeredNoteUntransposed <= 88)) { if ((fingeredNoteUntransposed >= 73) && (fingeredNoteUntransposed <= 88)) {
MIDIchannel = fingeredNoteUntransposed - 72; // Mid C and up MIDIchannel = fingeredNoteUntransposed - 72; // Mid C and up
digitalWrite(statusLedPin, LOW); digitalWrite(statusLedPin, LOW);
@ -673,8 +673,8 @@ void loop() {
digitalWrite(statusLedPin, HIGH); digitalWrite(statusLedPin, HIGH);
} }
} else { } else {
if (!pinkyKey){ // note number to patch number if (!pinkyKey) { // note number to patch number
if (patch != fingeredNoteUntransposed){ if (patch != fingeredNoteUntransposed) {
patch = fingeredNoteUntransposed; patch = fingeredNoteUntransposed;
doPatchUpdate = 1; doPatchUpdate = 1;
digitalWrite(statusLedPin, LOW); digitalWrite(statusLedPin, LOW);
@ -682,8 +682,8 @@ void loop() {
digitalWrite(statusLedPin, HIGH); digitalWrite(statusLedPin, HIGH);
} }
} else { // hi and lo patch numbers } else { // hi and lo patch numbers
if (fingeredNoteUntransposed > 75){ if (fingeredNoteUntransposed > 75) {
if (patch != patchLimit(fingeredNoteUntransposed + 24)){ if (patch != patchLimit(fingeredNoteUntransposed + 24)) {
patch = patchLimit(fingeredNoteUntransposed + 24); // add 24 to get high numbers 108 to 127 patch = patchLimit(fingeredNoteUntransposed + 24); // add 24 to get high numbers 108 to 127
doPatchUpdate = 1; doPatchUpdate = 1;
digitalWrite(statusLedPin, LOW); digitalWrite(statusLedPin, LOW);
@ -691,7 +691,7 @@ void loop() {
digitalWrite(statusLedPin, HIGH); digitalWrite(statusLedPin, HIGH);
} }
} else { } else {
if (patch != patchLimit(fingeredNoteUntransposed - 36)){ if (patch != patchLimit(fingeredNoteUntransposed - 36)) {
patch = patchLimit(fingeredNoteUntransposed - 36); // subtract 36 to get low numbers 0 to 36 patch = patchLimit(fingeredNoteUntransposed - 36); // subtract 36 to get low numbers 0 to 36
doPatchUpdate = 1; doPatchUpdate = 1;
digitalWrite(statusLedPin, LOW); digitalWrite(statusLedPin, LOW);
@ -701,22 +701,36 @@ void loop() {
} }
} }
} }
} } else {
else { if (pbDn > (pitchbMaxVal + pitchbThrVal) / 2 && (analogRead(0) < (breathCalZero - 800)) && programonce == false) { // down bend for suck programming button
if (pbDn > (pitchbMaxVal + pitchbThrVal)/2 && (analogRead(0) < (breathCalZero - 800)) && programonce == false) { // down bend for suck programming button
programonce = true; programonce = true;
readSwitches(); readSwitches();
if (octaveR == 0) { //lowest octave position if (octaveR == 0) { //lowest octave position
if (K1 && K2 && !K3 &&K4) { patch = patch -10; doPatchUpdate = 1; } // e28 send patch change -10
else if (K1 && !K2 && !K3 && K4) { patch--; doPatchUpdate = 1; } //f29 decrement and send patch change if (K1 && K2 && !K3 && K4) { // e28 send patch change -10
else if (!K1 && K2 && !K3 && K4) {patch = patch +10; doPatchUpdate = 1; } //f#30 send patch change +10 patch = patch - 10;
else if (!K1 && !K2 && !K3 &&K4) { patch++; doPatchUpdate = 1; } //g31 increment and send patch change doPatchUpdate = 1;
if (!K1 && !K2 && K3 &&!K4) { //send reverb pitchlatch value } else if (K1 && !K2 && !K3 && K4) { //f29 decrement and send patch change
patch--;
doPatchUpdate = 1;
} else if (!K1 && K2 && !K3 && K4) { //f#30 send patch change +10
patch = patch + 10;
doPatchUpdate = 1;
} else if (!K1 && !K2 && !K3 && K4) { //g31 increment and send patch change
patch++;
doPatchUpdate = 1;
}
if (!K1 && !K2 && K3 && !K4) { //send reverb pitchlatch value
reverb = ((pitchlatch - 36) * 2); reverb = ((pitchlatch - 36) * 2);
if (reverb > 127) {reverb = 127;} if (reverb > 127) {
if (reverb < 0) {reverb = 0;} reverb = 127;
midiSendControlChange(91,reverb); }
if (reverb < 0) {
reverb = 0;
}
midiSendControlChange(91, reverb);
} }
} }
@ -724,35 +738,37 @@ void loop() {
// breathCC value is from cclist[] which assigns controller number // breathCC value is from cclist[] which assigns controller number
if (K1) { //turn on midi volume if (K1) { //turn on midi volume
breathCC = 3; breathCC = 3;
midiSendControlChange(7,0); //midi vol to 0 midiSendControlChange(7, 0); //midi vol to 0
midiSendControlChange(11,127); //midi expression to 127 midiSendControlChange(11, 127); //midi expression to 127
} }
if (K3) { //turn on midi breath controller if (K3) { //turn on midi breath controller
breathCC = 2; breathCC = 2;
midiSendControlChange(7,127); //midi vol to 127 midiSendControlChange(7, 127); //midi vol to 127
midiSendControlChange(11,127); //midi expression to 127 midiSendControlChange(11, 127); //midi expression to 127
} }
if (K4) { //sb turn on midi expression if (K4) { //sb turn on midi expression
breathCC = 4; breathCC = 4;
midiSendControlChange(7,127); //midi vol to 127 midiSendControlChange(7, 127); //midi vol to 127
midiSendControlChange(11,0); //midi expression to 0 midiSendControlChange(11, 0); //midi expression to 0
} }
if (K2) { //2v turn on aftertouch if (K2) { //2v turn on aftertouch
breathAT = 1; breathAT = 1;
midiSendControlChange(7,127); //midi vol to 127 midiSendControlChange(7, 127); //midi vol to 127
midiSendControlChange(11,127); //midi expression to 0 midiSendControlChange(11, 127); //midi expression to 0
} else {
breathAT = 0;
} }
else { breathAT = 0; }
if (K5) { //1tr turn on velocity if (K5) { //1tr turn on velocity
velocity = 0; velocity = 0;
midiSendControlChange(7,127); //midi vol to 127 midiSendControlChange(7, 127); //midi vol to 127
midiSendControlChange(11,127); //midi expression to 0 midiSendControlChange(11, 127); //midi expression to 0
} else {
velocity = 127;
} }
else { velocity = 127; }
if (!K1 && !K3 && !K4) { if (!K1 && !K3 && !K4) {
breathCC = 0; breathCC = 0;
midiSendControlChange(7,127); //midi vol to 127 midiSendControlChange(7, 127); //midi vol to 127
midiSendControlChange(11,127); //midi expression to 127 midiSendControlChange(11, 127); //midi expression to 127
} }
} }
} }
@ -761,10 +777,9 @@ void loop() {
if (analogRead(0) > (breathCalZero - 800)) programonce = false; if (analogRead(0) > (breathCalZero - 800)) programonce = false;
specialKey = (touchRead(specialKeyPin) > touch_Thr); //S2 on pcb
specialKey=(touchRead(specialKeyPin) > touch_Thr); //S2 on pcb if (lastSpecialKey != specialKey) {
if (lastSpecialKey != specialKey ){ if (specialKey) {
if (specialKey){
// special key just pressed, check other keys // special key just pressed, check other keys
readSwitches(); readSwitches();
if (K4) { if (K4) {
@ -787,13 +802,13 @@ void loop() {
rotatorOn = 0; rotatorOn = 0;
} else subOctaveDouble = 0; } else subOctaveDouble = 0;
} }
if (!K1 && !K4 && !K5){ if (!K1 && !K4 && !K5) {
slurSustain = 0; slurSustain = 0;
parallelChord = 0; parallelChord = 0;
subOctaveDouble = 0; subOctaveDouble = 0;
rotatorOn = 0; rotatorOn = 0;
} }
if (pinkyKey){ if (pinkyKey) {
if (!rotatorOn) { if (!rotatorOn) {
rotatorOn = 1; rotatorOn = 1;
slurSustain = 0; slurSustain = 0;
@ -812,45 +827,46 @@ void loop() {
// Yes, so calculate MIDI note and velocity, then send a note on event // Yes, so calculate MIDI note and velocity, then send a note on event
readSwitches(); readSwitches();
// We should be at tonguing peak, so set velocity based on current pressureSensor value unless fixed velocity is set // We should be at tonguing peak, so set velocity based on current pressureSensor value unless fixed velocity is set
breathLevel=constrain(max(pressureSensor,initial_breath_value),breathThrVal,breathMaxVal); breathLevel = constrain(max(pressureSensor, initial_breath_value), breathThrVal, breathMaxVal);
if (!velocity) { if (!velocity) {
unsigned int breathValHires = breathCurve(map(constrain(breathLevel,breathThrVal,breathMaxVal),breathThrVal,breathMaxVal,0,16383)); unsigned int breathValHires = breathCurve(map(constrain(breathLevel, breathThrVal, breathMaxVal), breathThrVal, breathMaxVal, 0, 16383));
velocitySend = (breathValHires >>7) & 0x007F; velocitySend = (breathValHires >> 7) & 0x007F;
velocitySend = constrain(velocitySend+velocitySend*.1*velBias,1,127); velocitySend = constrain(velocitySend + velocitySend * .1 * velBias, 1, 127);
//velocitySend = map(constrain(max(pressureSensor,initial_breath_value),breathThrVal,breathMaxVal),breathThrVal,breathMaxVal,1,127); //velocitySend = map(constrain(max(pressureSensor,initial_breath_value),breathThrVal,breathMaxVal),breathThrVal,breathMaxVal,1,127);
} else velocitySend = velocity; } else velocitySend = velocity;
breath(); // send breath data breath(); // send breath data
fingeredNote=noteValueCheck(fingeredNote); fingeredNote = noteValueCheck(fingeredNote);
if (priority){ // mono prio to last chord note if (priority) { // mono prio to last chord note
midiSendNoteOn(fingeredNote, velocitySend); // send Note On message for new note midiSendNoteOn(fingeredNote, velocitySend); // send Note On message for new note
} }
if (parallelChord) { if (parallelChord) {
for (int i=0; i < addedIntervals; i++) { for (int i = 0; i < addedIntervals; i++) {
midiSendNoteOn(noteValueCheck(fingeredNote+slurInterval[i]), velocitySend); // send Note On message for new note midiSendNoteOn(noteValueCheck(fingeredNote + slurInterval[i]), velocitySend); // send Note On message for new note
} }
} }
if (slurSustain) { if (slurSustain) {
midiSendControlChange(64,127); midiSendControlChange(64, 127);
slurBase = fingeredNote; slurBase = fingeredNote;
addedIntervals = 0; addedIntervals = 0;
} }
if (subOctaveDouble) { if (subOctaveDouble) {
midiSendNoteOn(noteValueCheck(fingeredNote-12), velocitySend); midiSendNoteOn(noteValueCheck(fingeredNote - 12), velocitySend);
if (parallelChord){ if (parallelChord) {
for (int i=0; i < addedIntervals; i++) { for (int i = 0; i < addedIntervals; i++) {
midiSendNoteOn(noteValueCheck(fingeredNote+slurInterval[i]-12), velocitySend); // send Note On message for new note midiSendNoteOn(noteValueCheck(fingeredNote + slurInterval[i] - 12), velocitySend); // send Note On message for new note
} }
} }
} }
if (rotatorOn) { if (rotatorOn) {
midiSendNoteOn(noteValueCheck(fingeredNote+parallel), velocitySend); // send Note On message for new note midiSendNoteOn(noteValueCheck(fingeredNote + parallel), velocitySend); // send Note On message for new note
if (currentRotation < 3) currentRotation++; else currentRotation = 0; if (currentRotation < 3) currentRotation++;
midiSendNoteOn(noteValueCheck(fingeredNote+rotations[currentRotation]), velocitySend); // send Note On message for new note else currentRotation = 0;
midiSendNoteOn(noteValueCheck(fingeredNote + rotations[currentRotation]), velocitySend); // send Note On message for new note
} }
if (!priority) { // mono prio to base note if (!priority) { // mono prio to base note
midiSendNoteOn(fingeredNote, velocitySend); // send Note On message for new note midiSendNoteOn(fingeredNote, velocitySend); // send Note On message for new note
} }
activeNote=fingeredNote; activeNote = fingeredNote;
mainState = NOTE_ON; mainState = NOTE_ON;
} }
} else { } else {
@ -861,38 +877,38 @@ void loop() {
} else if (mainState == NOTE_ON) { } else if (mainState == NOTE_ON) {
if ((pressureSensor < breathThrVal) && !gateOpen) { if ((pressureSensor < breathThrVal) && !gateOpen) {
// Value has fallen below threshold - turn the note off // Value has fallen below threshold - turn the note off
activeNote=noteValueCheck(activeNote); activeNote = noteValueCheck(activeNote);
if (priority){ if (priority) {
midiSendNoteOff(activeNote); // send Note Off message midiSendNoteOff(activeNote); // send Note Off message
} }
if (parallelChord) { if (parallelChord) {
for (int i=0; i < addedIntervals; i++){ for (int i = 0; i < addedIntervals; i++) {
midiSendNoteOff(noteValueCheck(activeNote+slurInterval[i])); // send Note On message for new note midiSendNoteOff(noteValueCheck(activeNote + slurInterval[i])); // send Note On message for new note
} }
} }
if (subOctaveDouble) { if (subOctaveDouble) {
midiSendNoteOff(noteValueCheck(activeNote-12)); midiSendNoteOff(noteValueCheck(activeNote - 12));
if (parallelChord){ if (parallelChord) {
for (int i=0; i < addedIntervals; i++) { for (int i = 0; i < addedIntervals; i++) {
midiSendNoteOff(noteValueCheck(activeNote+slurInterval[i]-12)); // send Note On message for new note midiSendNoteOff(noteValueCheck(activeNote + slurInterval[i] - 12)); // send Note On message for new note
} }
} }
} }
if (rotatorOn) { if (rotatorOn) {
midiSendNoteOff(noteValueCheck(activeNote+parallel)); // send Note Off message for old note midiSendNoteOff(noteValueCheck(activeNote + parallel)); // send Note Off message for old note
midiSendNoteOff(noteValueCheck(activeNote+rotations[currentRotation])); // send Note Off message for old note midiSendNoteOff(noteValueCheck(activeNote + rotations[currentRotation])); // send Note Off message for old note
} }
if (!priority) { if (!priority) {
midiSendNoteOff(activeNote); // send Note Off message midiSendNoteOff(activeNote); // send Note Off message
} }
if (slurSustain) { if (slurSustain) {
midiSendControlChange(64,0); midiSendControlChange(64, 0);
} }
breathLevel=0; breathLevel = 0;
mainState = NOTE_OFF; mainState = NOTE_OFF;
} else { } else {
readSwitches(); readSwitches();
if (fingeredNote != lastFingering){ // if (fingeredNote != lastFingering) { //
// reset the debouncing timer // reset the debouncing timer
lastDeglitchTime = millis(); lastDeglitchTime = millis();
} }
@ -904,59 +920,59 @@ void loop() {
// Send a note off for the current note and a note on for // Send a note off for the current note and a note on for
// the new note. // the new note.
if (!velocity) { if (!velocity) {
unsigned int breathValHires = breathCurve(map(constrain(breathLevel,breathThrVal,breathMaxVal),breathThrVal,breathMaxVal,0,16383)); unsigned int breathValHires = breathCurve(map(constrain(breathLevel, breathThrVal, breathMaxVal), breathThrVal, breathMaxVal, 0, 16383));
velocitySend = (breathValHires >>7) & 0x007F; velocitySend = (breathValHires >> 7) & 0x007F;
velocitySend = constrain(velocitySend+velocitySend*.1*velBias,1,127); velocitySend = constrain(velocitySend + velocitySend * .1 * velBias, 1, 127);
//velocitySend = map(constrain(pressureSensor,breathThrVal,breathMaxVal),breathThrVal,breathMaxVal,7,127); // set new velocity value based on current pressure sensor level //velocitySend = map(constrain(pressureSensor,breathThrVal,breathMaxVal),breathThrVal,breathMaxVal,7,127); // set new velocity value based on current pressure sensor level
} }
activeNote=noteValueCheck(activeNote); activeNote = noteValueCheck(activeNote);
if ((parallelChord || subOctaveDouble || rotatorOn) && priority){ // poly playing, send old note off before new note on if ((parallelChord || subOctaveDouble || rotatorOn) && priority) { // poly playing, send old note off before new note on
midiSendNoteOff(activeNote); // send Note Off message for old note midiSendNoteOff(activeNote); // send Note Off message for old note
} }
if (parallelChord) { if (parallelChord) {
for (int i=0; i < addedIntervals; i++) { for (int i = 0; i < addedIntervals; i++) {
midiSendNoteOff(noteValueCheck(activeNote+slurInterval[i])); // send Note Off message for old note midiSendNoteOff(noteValueCheck(activeNote + slurInterval[i])); // send Note Off message for old note
} }
} }
if (subOctaveDouble) { if (subOctaveDouble) {
midiSendNoteOff(noteValueCheck(activeNote-12)); // send Note Off message for old note midiSendNoteOff(noteValueCheck(activeNote - 12)); // send Note Off message for old note
if (parallelChord){ if (parallelChord) {
for (int i=0; i < addedIntervals; i++) { for (int i = 0; i < addedIntervals; i++) {
midiSendNoteOff(noteValueCheck(activeNote+slurInterval[i]-12)); // send Note Off message for old note midiSendNoteOff(noteValueCheck(activeNote + slurInterval[i] - 12)); // send Note Off message for old note
} }
} }
} }
if (rotatorOn) { if (rotatorOn) {
midiSendNoteOff(noteValueCheck(activeNote+parallel)); // send Note Off message for old note midiSendNoteOff(noteValueCheck(activeNote + parallel)); // send Note Off message for old note
midiSendNoteOff(noteValueCheck(activeNote+rotations[currentRotation])); // send Note Off message for old note midiSendNoteOff(noteValueCheck(activeNote + rotations[currentRotation])); // send Note Off message for old note
} }
if ((parallelChord || subOctaveDouble || rotatorOn) && !priority) { // poly playing, send old note off before new note on if ((parallelChord || subOctaveDouble || rotatorOn) && !priority) { // poly playing, send old note off before new note on
midiSendNoteOff(activeNote); // send Note Off message for old note midiSendNoteOff(activeNote); // send Note Off message for old note
} }
fingeredNote = noteValueCheck(fingeredNote);
fingeredNote=noteValueCheck(fingeredNote);
if (priority) { if (priority) {
midiSendNoteOn(fingeredNote, velocitySend); // send Note On message for new note midiSendNoteOn(fingeredNote, velocitySend); // send Note On message for new note
} }
if (parallelChord) { if (parallelChord) {
for (int i=0; i < addedIntervals; i++){ for (int i = 0; i < addedIntervals; i++) {
midiSendNoteOn(noteValueCheck(fingeredNote+slurInterval[i]), velocitySend); // send Note On message for new note midiSendNoteOn(noteValueCheck(fingeredNote + slurInterval[i]), velocitySend); // send Note On message for new note
} }
} }
if (subOctaveDouble) { if (subOctaveDouble) {
midiSendNoteOn(noteValueCheck(fingeredNote-12), velocitySend); // send Note On message for new note midiSendNoteOn(noteValueCheck(fingeredNote - 12), velocitySend); // send Note On message for new note
if (parallelChord){ if (parallelChord) {
for (int i=0; i < addedIntervals; i++) { for (int i = 0; i < addedIntervals; i++) {
midiSendNoteOn(noteValueCheck(fingeredNote+slurInterval[i]-12), velocitySend); // send Note On message for new note midiSendNoteOn(noteValueCheck(fingeredNote + slurInterval[i] - 12), velocitySend); // send Note On message for new note
} }
} }
} }
if (rotatorOn) { if (rotatorOn) {
midiSendNoteOn(noteValueCheck(fingeredNote+parallel), velocitySend); // send Note On message for new note midiSendNoteOn(noteValueCheck(fingeredNote + parallel), velocitySend); // send Note On message for new note
if (currentRotation < 3) currentRotation++; else currentRotation = 0; if (currentRotation < 3) currentRotation++;
midiSendNoteOn(noteValueCheck(fingeredNote+rotations[currentRotation]), velocitySend); // send Note On message for new note else currentRotation = 0;
midiSendNoteOn(noteValueCheck(fingeredNote + rotations[currentRotation]), velocitySend); // send Note On message for new note
} }
if (!priority) { if (!priority) {
@ -970,10 +986,10 @@ void loop() {
if (slurSustain) { if (slurSustain) {
if (addedIntervals < 9) { if (addedIntervals < 9) {
addedIntervals++; addedIntervals++;
slurInterval[addedIntervals-1] = fingeredNote - slurBase; slurInterval[addedIntervals - 1] = fingeredNote - slurBase;
} }
} }
activeNote=fingeredNote; activeNote = fingeredNote;
} }
} }
} }
@ -984,7 +1000,7 @@ void loop() {
// deal with Breath, Pitch Bend, Modulation, etc. // deal with Breath, Pitch Bend, Modulation, etc.
if (!slowMidi) breath(); if (!slowMidi) breath();
halfTime = !halfTime; halfTime = !halfTime;
if (halfTime){ if (halfTime) {
pitch_bend(); pitch_bend();
portamento_(); portamento_();
} else { } else {
@ -995,18 +1011,18 @@ void loop() {
} }
ccSendTime = millis(); ccSendTime = millis();
} }
if (millis() - pixelUpdateTime > pixelUpdateInterval){ if (millis() - pixelUpdateTime > pixelUpdateInterval) {
// even if we just alter a pixel, the whole display is redrawn (35ms of MPU lockup) and we can't do that all the time // even if we just alter a pixel, the whole display is redrawn (35ms of MPU lockup) and we can't do that all the time
// this is one of the big reasons the display is for setup use only // this is one of the big reasons the display is for setup use only
drawSensorPixels(); // live sensor monitoring for the setup screens drawSensorPixels(); // live sensor monitoring for the setup screens
if (rotatorOn || slurSustain || parallelChord || subOctaveDouble || gateOpen) { if (rotatorOn || slurSustain || parallelChord || subOctaveDouble || gateOpen) {
digitalWrite(statusLedPin,!digitalRead(statusLedPin)); digitalWrite(statusLedPin, !digitalRead(statusLedPin));
} else if (!digitalRead(statusLedPin)) { } else if (!digitalRead(statusLedPin)) {
digitalWrite(statusLedPin,HIGH); digitalWrite(statusLedPin, HIGH);
} }
pixelUpdateTime = millis(); pixelUpdateTime = millis();
} }
lastFingering=fingeredNote; lastFingering = fingeredNote;
//do menu stuff //do menu stuff
menu(); menu();
} }
@ -1015,22 +1031,21 @@ void loop() {
// non linear mapping function (http://playground.arduino.cc/Main/MultiMap) // non linear mapping function (http://playground.arduino.cc/Main/MultiMap)
// note: the _in array should have increasing values // note: the _in array should have increasing values
unsigned int multiMap(unsigned int val, unsigned int* _in, unsigned int* _out, uint8_t size) unsigned int multiMap(unsigned int val, unsigned int * _in, unsigned int * _out, uint8_t size) {
{
// take care the value is within range // take care the value is within range
// val = constrain(val, _in[0], _in[size-1]); // val = constrain(val, _in[0], _in[size-1]);
if (val <= _in[0]) return _out[0]; if (val <= _in[0]) return _out[0];
if (val >= _in[size-1]) return _out[size-1]; if (val >= _in[size - 1]) return _out[size - 1];
// search right interval // search right interval
uint8_t pos = 1; // _in[0] allready tested uint8_t pos = 1; // _in[0] allready tested
while(val > _in[pos]) pos++; while (val > _in[pos]) pos++;
// this will handle all exact "points" in the _in array // this will handle all exact "points" in the _in array
if (val == _in[pos]) return _out[pos]; if (val == _in[pos]) return _out[pos];
// interpolate in the right segment for the rest // interpolate in the right segment for the rest
return (val - _in[pos-1]) * (_out[pos] - _out[pos-1]) / (_in[pos] - _in[pos-1]) + _out[pos-1]; return (val - _in[pos - 1]) * (_out[pos] - _out[pos - 1]) / (_in[pos] - _in[pos - 1]) + _out[pos - 1];
} }
//************************************************************** //**************************************************************
@ -1038,22 +1053,22 @@ unsigned int multiMap(unsigned int val, unsigned int* _in, unsigned int* _out, u
// map breath values to selected curve // map breath values to selected curve
unsigned int breathCurve(unsigned int inputVal) { unsigned int breathCurve(unsigned int inputVal) {
// 0 to 16383, moving mid value up or down // 0 to 16383, moving mid value up or down
switch (curve){ switch (curve) {
case 0: case 0:
// -4 // -4
return multiMap(inputVal,curveIn,curveM4,17); return multiMap(inputVal, curveIn, curveM4, 17);
break; break;
case 1: case 1:
// -3 // -3
return multiMap(inputVal,curveIn,curveM3,17); return multiMap(inputVal, curveIn, curveM3, 17);
break; break;
case 2: case 2:
// -2 // -2
return multiMap(inputVal,curveIn,curveM2,17); return multiMap(inputVal, curveIn, curveM2, 17);
break; break;
case 3: case 3:
// -1 // -1
return multiMap(inputVal,curveIn,curveM1,17); return multiMap(inputVal, curveIn, curveM1, 17);
break; break;
case 4: case 4:
// 0, linear // 0, linear
@ -1061,35 +1076,35 @@ unsigned int breathCurve(unsigned int inputVal) {
break; break;
case 5: case 5:
// +1 // +1
return multiMap(inputVal,curveIn,curveP1,17); return multiMap(inputVal, curveIn, curveP1, 17);
break; break;
case 6: case 6:
// +2 // +2
return multiMap(inputVal,curveIn,curveP2,17); return multiMap(inputVal, curveIn, curveP2, 17);
break; break;
case 7: case 7:
// +3 // +3
return multiMap(inputVal,curveIn,curveP3,17); return multiMap(inputVal, curveIn, curveP3, 17);
break; break;
case 8: case 8:
// +4 // +4
return multiMap(inputVal,curveIn,curveP4,17); return multiMap(inputVal, curveIn, curveP4, 17);
break; break;
case 9: case 9:
// S1 // S1
return multiMap(inputVal,curveIn,curveS1,17); return multiMap(inputVal, curveIn, curveS1, 17);
break; break;
case 10: case 10:
// S2 // S2
return multiMap(inputVal,curveIn,curveS2,17); return multiMap(inputVal, curveIn, curveS2, 17);
break; break;
case 11: case 11:
// Z1 // Z1
return multiMap(inputVal,curveIn,curveZ1,17); return multiMap(inputVal, curveIn, curveZ1, 17);
break; break;
case 12: case 12:
// Z2 // Z2
return multiMap(inputVal,curveIn,curveZ2,17); return multiMap(inputVal, curveIn, curveZ2, 17);
break; break;
default: //Fallback option that should never be reached, use linear default: //Fallback option that should never be reached, use linear
return inputVal; return inputVal;
@ -1120,9 +1135,9 @@ int smooth(int data, float filterVal, float smoothedVal){
// MIDI note value check with out of range octave repeat // MIDI note value check with out of range octave repeat
int noteValueCheck(int note) { int noteValueCheck(int note) {
if (note > 127) { if (note > 127) {
note = 115+(note-127)%12; note = 115 + (note - 127) % 12;
} else if (note < 0) { } else if (note < 0) {
note = 12-abs(note)%12; note = 12 - abs(note) % 12;
} }
return note; return note;
} }
@ -1130,7 +1145,9 @@ int noteValueCheck(int note) {
//************************************************************** //**************************************************************
int patchLimit(int value) { int patchLimit(int value) {
if (value < 1) return 1; else if (value > 128) return 128; else return value; if (value < 1) return 1;
else if (value > 128) return 128;
else return value;
} }
//************************************************************** //**************************************************************
@ -1138,13 +1155,13 @@ int patchLimit(int value) {
void statusLEDs() { void statusLEDs() {
if (breathLevel > breathThrVal) { // breath indicator LED, labeled "B" on PCB if (breathLevel > breathThrVal) { // breath indicator LED, labeled "B" on PCB
//analogWrite(bLedPin, map(breathLevel,0,4096,5,breathLedBrightness)); //analogWrite(bLedPin, map(breathLevel,0,4096,5,breathLedBrightness));
analogWrite(bLedPin, map(constrain(breathLevel,breathThrVal,breathMaxVal),breathThrVal,breathMaxVal,5,breathLedBrightness)); analogWrite(bLedPin, map(constrain(breathLevel, breathThrVal, breathMaxVal), breathThrVal, breathMaxVal, 5, breathLedBrightness));
} else { } else {
analogWrite(bLedPin, 0); analogWrite(bLedPin, 0);
} }
if (biteSensor > portamThrVal) { // portamento indicator LED, labeled "P" on PCB if (biteSensor > portamThrVal) { // portamento indicator LED, labeled "P" on PCB
//analogWrite(pLedPin, map(biteSensor,0,4096,5,portamLedBrightness)); //analogWrite(pLedPin, map(biteSensor,0,4096,5,portamLedBrightness));
analogWrite(pLedPin, map(constrain(biteSensor,portamThrVal,portamMaxVal),portamThrVal,portamMaxVal,5,portamLedBrightness)); analogWrite(pLedPin, map(constrain(biteSensor, portamThrVal, portamMaxVal), portamThrVal, portamMaxVal, 5, portamLedBrightness));
} else { } else {
analogWrite(pLedPin, 0); analogWrite(pLedPin, 0);
} }
@ -1153,17 +1170,17 @@ void statusLEDs() {
//************************************************************** //**************************************************************
void breath() { void breath() {
int breathCCval,breathCCvalFine; int breathCCval, breathCCvalFine;
unsigned int breathCCvalHires; unsigned int breathCCvalHires;
breathLevel = constrain(pressureSensor,breathThrVal,breathMaxVal); breathLevel = constrain(pressureSensor, breathThrVal, breathMaxVal);
//breathLevel = breathLevel*0.6+pressureSensor*0.4; // smoothing of breathLevel value //breathLevel = breathLevel*0.6+pressureSensor*0.4; // smoothing of breathLevel value
////////breathCCval = map(constrain(breathLevel,breathThrVal,breathMaxVal),breathThrVal,breathMaxVal,0,127); ////////breathCCval = map(constrain(breathLevel,breathThrVal,breathMaxVal),breathThrVal,breathMaxVal,0,127);
breathCCvalHires = breathCurve(map(constrain(breathLevel,breathThrVal,breathMaxVal),breathThrVal,breathMaxVal,0,16383)); breathCCvalHires = breathCurve(map(constrain(breathLevel, breathThrVal, breathMaxVal), breathThrVal, breathMaxVal, 0, 16383));
breathCCval = (breathCCvalHires >>7) & 0x007F; breathCCval = (breathCCvalHires >> 7) & 0x007F;
breathCCvalFine = breathCCvalHires & 0x007F; breathCCvalFine = breathCCvalHires & 0x007F;
if (breathCCval != oldbreath) { // only send midi data if breath has changed from previous value if (breathCCval != oldbreath) { // only send midi data if breath has changed from previous value
if (breathCC){ if (breathCC) {
// send midi cc // send midi cc
midiSendControlChange(ccList[breathCC], breathCCval); midiSendControlChange(ccList[breathCC], breathCCval);
} }
@ -1175,8 +1192,8 @@ void breath() {
} }
if (breathCCvalHires != oldbreathhires) { if (breathCCvalHires != oldbreathhires) {
if ((breathCC > 4) && (breathCC < 9)){ // send high resolution midi if ((breathCC > 4) && (breathCC < 9)) { // send high resolution midi
midiSendControlChange(ccList[breathCC]+32, breathCCvalFine); midiSendControlChange(ccList[breathCC] + 32, breathCCvalFine);
} }
oldbreathhires = breathCCvalHires; oldbreathhires = breathCCvalHires;
} }
@ -1195,46 +1212,46 @@ void pitch_bend() {
halfPitchBendKey = (pinkySetting == PBD) && (touchRead(halfPitchBendKeyPin) > touch_Thr); // SENSOR PIN 1 - PCB PIN "S1" - hold for 1/2 pitchbend value halfPitchBendKey = (pinkySetting == PBD) && (touchRead(halfPitchBendKeyPin) > touch_Thr); // SENSOR PIN 1 - PCB PIN "S1" - hold for 1/2 pitchbend value
int vibRead = touchRead(vibratoPin); // SENSOR PIN 15 - built in var cap int vibRead = touchRead(vibratoPin); // SENSOR PIN 15 - built in var cap
calculatedPBdepth = pbDepthList[PBdepth]; calculatedPBdepth = pbDepthList[PBdepth];
if (halfPitchBendKey) calculatedPBdepth = calculatedPBdepth*0.5; if (halfPitchBendKey) calculatedPBdepth = calculatedPBdepth * 0.5;
vibMax = vibMaxList[vibSens-1]; vibMax = vibMaxList[vibSens - 1];
if (vibRead < vibThr) { if (vibRead < vibThr) {
if (UPWD == vibDirection) { if (UPWD == vibDirection) {
vibSignal=vibSignal*0.5+0.5*map(constrain(vibRead,(vibZero-vibMax),vibThr),vibThr,(vibZero-vibMax),0,calculatedPBdepth*vibDepth[vibrato]); vibSignal = vibSignal * 0.5 + 0.5 * map(constrain(vibRead, (vibZero - vibMax), vibThr), vibThr, (vibZero - vibMax), 0, calculatedPBdepth * vibDepth[vibrato]);
} else { } else {
vibSignal=vibSignal*0.5+0.5*map(constrain(vibRead,(vibZero-vibMax),vibThr),vibThr,(vibZero-vibMax),0,(0 - calculatedPBdepth*vibDepth[vibrato])); vibSignal = vibSignal * 0.5 + 0.5 * map(constrain(vibRead, (vibZero - vibMax), vibThr), vibThr, (vibZero - vibMax), 0, (0 - calculatedPBdepth * vibDepth[vibrato]));
} }
} else if (vibRead > vibThrLo){ } else if (vibRead > vibThrLo) {
if (UPWD == vibDirection){ if (UPWD == vibDirection) {
vibSignal=vibSignal*0.5+0.5*map(constrain(vibRead,vibThrLo,(vibZero+vibMax)),vibThrLo,(vibZero+vibMax),0,(0 - calculatedPBdepth*vibDepth[vibrato])); vibSignal = vibSignal * 0.5 + 0.5 * map(constrain(vibRead, vibThrLo, (vibZero + vibMax)), vibThrLo, (vibZero + vibMax), 0, (0 - calculatedPBdepth * vibDepth[vibrato]));
} else { } else {
vibSignal=vibSignal*0.5+0.5*map(constrain(vibRead,vibThrLo,(vibZero+vibMax)),vibThrLo,(vibZero+vibMax),0,calculatedPBdepth*vibDepth[vibrato]); vibSignal = vibSignal * 0.5 + 0.5 * map(constrain(vibRead, vibThrLo, (vibZero + vibMax)), vibThrLo, (vibZero + vibMax), 0, calculatedPBdepth * vibDepth[vibrato]);
} }
} else { } else {
vibSignal = vibSignal*0.5; vibSignal = vibSignal * 0.5;
} }
switch(vibRetn) { // moving baseline switch (vibRetn) { // moving baseline
case 0: case 0:
//keep vibZero value //keep vibZero value
break; break;
case 1: case 1:
vibZero = vibZero*0.95+vibRead*0.05; vibZero = vibZero * 0.95 + vibRead * 0.05;
break; break;
case 2: case 2:
vibZero = vibZero*0.9+vibRead*0.1; vibZero = vibZero * 0.9 + vibRead * 0.1;
break; break;
case 3: case 3:
vibZero = vibZero*0.8+vibRead*0.2; vibZero = vibZero * 0.8 + vibRead * 0.2;
break; break;
case 4: case 4:
vibZero = vibZero*0.6+vibRead*0.4; vibZero = vibZero * 0.6 + vibRead * 0.4;
} }
vibThr=vibZero-vibSquelch; vibThr = vibZero - vibSquelch;
vibThrLo=vibZero+vibSquelch; vibThrLo = vibZero + vibSquelch;
int pbPos = map(constrain(pbUp,pitchbThrVal,pitchbMaxVal),pitchbThrVal,pitchbMaxVal,0,calculatedPBdepth); int pbPos = map(constrain(pbUp, pitchbThrVal, pitchbMaxVal), pitchbThrVal, pitchbMaxVal, 0, calculatedPBdepth);
int pbNeg = map(constrain(pbDn,pitchbThrVal,pitchbMaxVal),pitchbThrVal,pitchbMaxVal,0,calculatedPBdepth); int pbNeg = map(constrain(pbDn, pitchbThrVal, pitchbMaxVal), pitchbThrVal, pitchbMaxVal, 0, calculatedPBdepth);
int pbSum = 8193 + pbPos - pbNeg; int pbSum = 8193 + pbPos - pbNeg;
int pbDif = abs(pbPos - pbNeg); int pbDif = abs(pbPos - pbNeg);
/* /*
@ -1251,24 +1268,24 @@ void pitch_bend() {
if (pbDif < 10) { if (pbDif < 10) {
pitchBend = 8192; pitchBend = 8192;
} else { } else {
pitchBend=pitchBend*0.6+0.4*pbSum; pitchBend = pitchBend * 0.6 + 0.4 * pbSum;
} }
pbTouched = 1; pbTouched = 1;
} }
if (!pbTouched) { if (!pbTouched) {
pitchBend = pitchBend*0.6+8192*0.4; // released, so smooth your way back to zero pitchBend = pitchBend * 0.6 + 8192 * 0.4; // released, so smooth your way back to zero
if ((pitchBend > 8187) && (pitchBend < 8197)) pitchBend = 8192; // 8192 is 0 pitch bend, don't miss it bc of smoothing if ((pitchBend > 8187) && (pitchBend < 8197)) pitchBend = 8192; // 8192 is 0 pitch bend, don't miss it bc of smoothing
} }
pitchBend=pitchBend+vibSignal; pitchBend = pitchBend + vibSignal;
pitchBend=constrain(pitchBend, 0, 16383); pitchBend = constrain(pitchBend, 0, 16383);
if (subVibSquelch && (8192 != pitchBend)) { if (subVibSquelch && (8192 != pitchBend)) {
digitalWrite(statusLedPin,LOW); digitalWrite(statusLedPin, LOW);
vibLedOff = 1; vibLedOff = 1;
} else if (vibLedOff) { } else if (vibLedOff) {
digitalWrite(statusLedPin,HIGH); digitalWrite(statusLedPin, HIGH);
vibLedOff = 0; vibLedOff = 0;
} }
@ -1276,9 +1293,9 @@ void pitch_bend() {
//Serial.print(" - "); //Serial.print(" - ");
//Serial.println(oldpb); //Serial.println(oldpb);
if (pitchBend != oldpb){// only send midi data if pitch bend has changed from previous value if (pitchBend != oldpb) { // only send midi data if pitch bend has changed from previous value
midiSendPitchBend(pitchBend); midiSendPitchBend(pitchBend);
oldpb=pitchBend; oldpb = pitchBend;
} }
} }
@ -1286,31 +1303,30 @@ void pitch_bend() {
void doorKnobCheck() { void doorKnobCheck() {
int touchValue[12]; int touchValue[12];
for (byte i=0; i<12; i++){ for (byte i = 0; i < 12; i++) {
touchValue[i]=touchSensor.filteredData(i); touchValue[i] = touchSensor.filteredData(i);
} }
if ((touchValue[K4Pin] < ctouchThrVal) && (touchValue[R1Pin] < ctouchThrVal) && (touchValue[R2Pin] < ctouchThrVal) && (touchValue[R3Pin] < ctouchThrVal)){ // doorknob grip on canister if ((touchValue[K4Pin] < ctouchThrVal) && (touchValue[R1Pin] < ctouchThrVal) && (touchValue[R2Pin] < ctouchThrVal) && (touchValue[R3Pin] < ctouchThrVal)) { // doorknob grip on canister
if (pbUp > ((pitchbMaxVal + pitchbThrVal)/2)) { if (pbUp > ((pitchbMaxVal + pitchbThrVal) / 2)) {
gateOpen = 1; gateOpen = 1;
digitalWrite(statusLedPin,LOW); digitalWrite(statusLedPin, LOW);
delay(50); delay(50);
digitalWrite(statusLedPin,HIGH); digitalWrite(statusLedPin, HIGH);
delay(50); delay(50);
} } else if (pbDn > ((pitchbMaxVal + pitchbThrVal) / 2)) {
else if (pbDn > ((pitchbMaxVal + pitchbThrVal)/2)) {
gateOpen = 0; gateOpen = 0;
midiPanic(); midiPanic();
digitalWrite(statusLedPin,LOW); digitalWrite(statusLedPin, LOW);
delay(50); delay(50);
digitalWrite(statusLedPin,HIGH); digitalWrite(statusLedPin, HIGH);
delay(50); delay(50);
digitalWrite(statusLedPin,LOW); digitalWrite(statusLedPin, LOW);
delay(50); delay(50);
digitalWrite(statusLedPin,HIGH); digitalWrite(statusLedPin, HIGH);
delay(50); delay(50);
digitalWrite(statusLedPin,LOW); digitalWrite(statusLedPin, LOW);
delay(50); delay(50);
digitalWrite(statusLedPin,HIGH); digitalWrite(statusLedPin, HIGH);
delay(700); delay(700);
} }
} }
@ -1320,56 +1336,56 @@ void doorKnobCheck() {
void extraController() { void extraController() {
// Extra Controller is the lip touch sensor (proportional) in front of the mouthpiece // Extra Controller is the lip touch sensor (proportional) in front of the mouthpiece
exSensor=exSensor*0.6+0.4*touchRead(extraPin); // get sensor data, do some smoothing - SENSOR PIN 16 - PCB PIN "EC" (marked K4 on some prototype boards) exSensor = exSensor * 0.6 + 0.4 * touchRead(extraPin); // get sensor data, do some smoothing - SENSOR PIN 16 - PCB PIN "EC" (marked K4 on some prototype boards)
if (extraCT && (exSensor >= extracThrVal)) { // if we are enabled and over the threshold, send data if (extraCT && (exSensor >= extracThrVal)) { // if we are enabled and over the threshold, send data
if (!extracIsOn) { if (!extracIsOn) {
extracIsOn=1; extracIsOn = 1;
if (extraCT == 4) { //Sustain ON if (extraCT == 4) { //Sustain ON
midiSendControlChange(64, 127); midiSendControlChange(64, 127);
} }
} }
if (extraCT == 1) { //Send modulation if (extraCT == 1) { //Send modulation
int extracCC = map(constrain(exSensor,extracThrVal,extracMaxVal),extracThrVal,extracMaxVal,1,127); int extracCC = map(constrain(exSensor, extracThrVal, extracMaxVal), extracThrVal, extracMaxVal, 1, 127);
if (extracCC != oldextrac){ if (extracCC != oldextrac) {
midiSendControlChange(1, extracCC); midiSendControlChange(1, extracCC);
} }
oldextrac = extracCC; oldextrac = extracCC;
} }
if (extraCT == 2) { //Send foot pedal (CC#4) if (extraCT == 2) { //Send foot pedal (CC#4)
int extracCC = map(constrain(exSensor,extracThrVal,extracMaxVal),extracThrVal,extracMaxVal,1,127); int extracCC = map(constrain(exSensor, extracThrVal, extracMaxVal), extracThrVal, extracMaxVal, 1, 127);
if (extracCC != oldextrac){ if (extracCC != oldextrac) {
midiSendControlChange(4, extracCC); midiSendControlChange(4, extracCC);
} }
oldextrac = extracCC; oldextrac = extracCC;
} }
if ((extraCT == 3) && (breathCC != 9)) { //Send filter cutoff (CC#74) if ((extraCT == 3) && (breathCC != 9)) { //Send filter cutoff (CC#74)
int extracCC = map(constrain(exSensor,extracThrVal,extracMaxVal),extracThrVal,extracMaxVal,1,127); int extracCC = map(constrain(exSensor, extracThrVal, extracMaxVal), extracThrVal, extracMaxVal, 1, 127);
if (extracCC != oldextrac){ if (extracCC != oldextrac) {
midiSendControlChange(74, extracCC); midiSendControlChange(74, extracCC);
} }
oldextrac = extracCC; oldextrac = extracCC;
} }
} else if (extracIsOn) { // we have just gone below threshold, so send zero value } else if (extracIsOn) { // we have just gone below threshold, so send zero value
extracIsOn=0; extracIsOn = 0;
if (extraCT == 1){ //MW if (extraCT == 1) { //MW
if (oldextrac != 0){ if (oldextrac != 0) {
//send modulation 0 //send modulation 0
midiSendControlChange(1, 0); midiSendControlChange(1, 0);
oldextrac = 0; oldextrac = 0;
} }
} else if (extraCT == 2){ //FP } else if (extraCT == 2) { //FP
if (oldextrac != 0){ if (oldextrac != 0) {
//send foot pedal 0 //send foot pedal 0
midiSendControlChange(4, 0); midiSendControlChange(4, 0);
oldextrac = 0; oldextrac = 0;
} }
} else if ((extraCT == 3) && (breathCC != 9)){ //CF } else if ((extraCT == 3) && (breathCC != 9)) { //CF
if (oldextrac != 0){ if (oldextrac != 0) {
//send filter cutoff 0 //send filter cutoff 0
midiSendControlChange(74, 0); midiSendControlChange(74, 0);
oldextrac = 0; oldextrac = 0;
} }
} else if (extraCT == 4){ //SP } else if (extraCT == 4) { //SP
//send sustain off //send sustain off
midiSendControlChange(64, 0); midiSendControlChange(64, 0);
} }
@ -1380,7 +1396,7 @@ void extraController() {
void portamento_() { void portamento_() {
// Portamento is controlled with the bite sensor (variable capacitor) in the mouthpiece // Portamento is controlled with the bite sensor (variable capacitor) in the mouthpiece
biteSensor=touchRead(bitePin); // get sensor data, do some smoothing - SENSOR PIN 17 - PCB PINS LABELED "BITE" (GND left, sensor pin right) biteSensor = touchRead(bitePin); // get sensor data, do some smoothing - SENSOR PIN 17 - PCB PINS LABELED "BITE" (GND left, sensor pin right)
if (portamento && (biteSensor >= portamThrVal)) { // if we are enabled and over the threshold, send portamento if (portamento && (biteSensor >= portamThrVal)) { // if we are enabled and over the threshold, send portamento
if (!portIsOn) { if (!portIsOn) {
portOn(); portOn();
@ -1397,15 +1413,15 @@ void portOn() {
if (portamento == 2) { // if portamento midi switching is enabled if (portamento == 2) { // if portamento midi switching is enabled
midiSendControlChange(CCN_PortOnOff, 127); midiSendControlChange(CCN_PortOnOff, 127);
} }
portIsOn=1; portIsOn = 1;
} }
//*********************************************************** //***********************************************************
void port() { void port() {
int portCC; int portCC;
portCC = map(constrain(biteSensor,portamThrVal,portamMaxVal),portamThrVal,portamMaxVal,0,127); portCC = map(constrain(biteSensor, portamThrVal, portamMaxVal), portamThrVal, portamMaxVal, 0, 127);
if (portCC!=oldport) { if (portCC != oldport) {
midiSendControlChange(CCN_Port, portCC); midiSendControlChange(CCN_Port, portCC);
} }
oldport = portCC; oldport = portCC;
@ -1420,7 +1436,7 @@ void portOff() {
if (portamento == 2) { // if portamento midi switching is enabled if (portamento == 2) { // if portamento midi switching is enabled
midiSendControlChange(CCN_PortOnOff, 0); midiSendControlChange(CCN_PortOnOff, 0);
} }
portIsOn=0; portIsOn = 0;
oldport = 0; oldport = 0;
} }
@ -1430,8 +1446,8 @@ void readSwitches() {
int qTransp; int qTransp;
// Read touch pads (MPR121) and put value in variables // Read touch pads (MPR121) and put value in variables
int touchValue[12]; int touchValue[12];
for (byte i=0; i<12; i++) { for (byte i = 0; i < 12; i++) {
touchValue[i]=touchSensor.filteredData(i); touchValue[i] = touchSensor.filteredData(i);
} }
// Octave rollers // Octave rollers
@ -1446,13 +1462,13 @@ void readSwitches() {
lastOctaveR = octaveR; lastOctaveR = octaveR;
// Valves and trill keys // Valves and trill keys
K4=(touchValue[K4Pin] < ctouchThrVal); K4 = (touchValue[K4Pin] < ctouchThrVal);
K1=(touchValue[K1Pin] < ctouchThrVal); K1 = (touchValue[K1Pin] < ctouchThrVal);
K2=(touchValue[K2Pin] < ctouchThrVal); K2 = (touchValue[K2Pin] < ctouchThrVal);
K3=(touchValue[K3Pin] < ctouchThrVal); K3 = (touchValue[K3Pin] < ctouchThrVal);
K5=(touchValue[K5Pin] < ctouchThrVal); K5 = (touchValue[K5Pin] < ctouchThrVal);
K6=(touchValue[K6Pin] < ctouchThrVal); K6 = (touchValue[K6Pin] < ctouchThrVal);
K7=(touchValue[K7Pin] < ctouchThrVal); K7 = (touchValue[K7Pin] < ctouchThrVal);
pinkyKey = (touchRead(halfPitchBendKeyPin) > touch_Thr); // SENSOR PIN 1 - PCB PIN "S1" pinkyKey = (touchRead(halfPitchBendKeyPin) > touch_Thr); // SENSOR PIN 1 - PCB PIN "S1"
@ -1464,16 +1480,15 @@ void readSwitches() {
qTransp = 0; qTransp = 0;
} }
// Calculate midi note number from pressed keys // Calculate midi note number from pressed keys
#if defined(CASSIDY) #if defined(CASSIDY)
fingeredNote=startNote-2*K1-K2-3*K3-5*K4+2*K5+K6+3*K7+octaveR*12+(octave-3)*12+transpose-12+qTransp; fingeredNote = startNote - 2*K1 - K2 - 3*K3 - 5*K4 + 2*K5 + K6 + 3*K7 + octaveR*12 + (octave - 3)*12 + transpose - 12 + qTransp;
fingeredNoteUntransposed=startNote-2*K1-K2-3*K3-5*K4+2*K5+K6+3*K7+octaveR*12; fingeredNoteUntransposed = startNote - 2*K1 - K2 - 3*K3 - 5*K4 + 2*K5 + K6 + 3*K7 + octaveR*12;
#else #else
fingeredNote=startNote-2*K1-K2-3*K3-5*K4+2*K5+K6+4*K7+octaveR*12+(octave-3)*12+transpose-12+qTransp; fingeredNote = startNote - 2*K1 - K2 - 3*K3 - 5*K4 + 2*K5 + K6 + 4*K7 + octaveR*12 + (octave - 3)*12 + transpose - 12 + qTransp;
fingeredNoteUntransposed=startNote-2*K1-K2-3*K3-5*K4+2*K5+K6+4*K7+octaveR*12; fingeredNoteUntransposed = startNote - 2*K1 - K2 - 3*K3 - 5*K4 + 2*K5 + K6 + 4*K7 + octaveR*12;
#endif #endif
//}
if (pinkyKey) pitchlatch = fingeredNoteUntransposed; //use pitchlatch to make settings based on note fingered if (pinkyKey) pitchlatch = fingeredNoteUntransposed; //use pitchlatch to make settings based on note fingered
} }